Exploring the coverage of antimicrobial stewardship across UK clinical postgraduate training curricula

Timothy M. Rawson1,2*, Thomas P. Butters3, Luke S. P. Moore1,2, Enrique Castro-Sánchez1, Fiona J. Cooke4 and Alison H. Holmes1,2

1National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; 2Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 OHS, UK; 3School of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK; 4Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 OQW, UK

*Corresponding author. National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK. Tel: +442033132732; E-mail: timothy.rawson07@imperial.ac.uk

Received 2 April 2016; returned 8 May 2016; revised 23 May 2016; accepted 11 June 2016

Objectives: Antimicrobial resistance (AMR) is a global political and patient safety issue. With ongoing strategic interventions to improve the shape of UK postgraduate clinical training, ensuring that all clinicians have appropriate knowledge and practical skills in the area of AMR is essential. To assess this, a cross-sectional analysis was undertaken of the coverage and quality of antimicrobial stewardship (AMS)/AMR within UK postgraduate clinical training curricula.

Methods: UK clinical specialty training curricula were identified. Topics and individual learning points relating to AMS or AMR were extracted for each specialty. Learning points were quality assessed against the expected level of clinical competence. Inter-specialty analysis was performed.

Results: Overall 37 specialties were assessed, equating to 2318 topics and 42527 learning points. Of these, 8/2318 (0.3%) topics and 184/42527 (0.4%) learning points were related to AMS/AMR. Infectious diseases represented all eight topics and 43/184 (23%) of the learning points. In contrast, primary care, which is responsible for the highest proportion of antimicrobial usage, had no topics and only 2/1368 (0.15%) of the AMS/AMR learning points. This paucity of representation was reflected across most of the remaining specialties. On quality assessment, the majority of learning points (111/184; 60%) required knowledge only, with no demonstration of behaviour in clinical practice required.

Conclusions: Coverage of AMS/AMR is poor across the majority of UK postgraduate clinical training curricula, with little depth of learning required. Given the threat of AMR, and evolving changes in clinical training pathways, we call for cross-specialty action to address this current lack of engagement.

Introduction

The threat to human health and safety posed by antimicrobial resistance (AMR) is a leading topic in international political agendas.1–3 Infection specialists and policy makers have engaged a wide range of actors in the field to produce guidelines and interventions, which aim to optimize the therapeutic benefit of antimicrobials whilst minimizing their harmful sequelae.2–5 Despite a wide uptake of antimicrobial stewardship (AMS) within the infection community there remains a paucity of evidence to describe cross-specialty engagement with AMS/AMR, which is vital given that the majority of antimicrobial prescribing is done by individuals who are not experts in infection management.6–10

For AMS to be successful there must be clinical leadership and self-governance from within each clinical specialty to drive changes in behaviour and clinical practice.11–13 Furthermore, mechanisms to identify ‘high-risk’ specialties (i.e. high rates of antimicrobial usage and healthcare-associated infections) for AMS interventions and a process to monitor their impact and reach are urgently required to ensure ongoing political and financial support from policy makers currently invested in the AMR agenda.10

Within this context, cross-specialty engagement in AMS/AMR education has an important role in promoting knowledge and practical skills related to the subject.10,14 Whilst the state of postgraduate training within infectious disease has been previously explored,15 there remains a paucity of information describing...
engagement with AMS/AMR at the strategic level of postgraduate medical education across other clinical disciplines. In the UK, trainees will progress through a number of different training pathways following qualification from medical school. All junior doctors initially undertake 2 years of foundation training. This is then usually followed by a core training pathway for a further 2 years (e.g. core medical or core surgical training), with the trainee then progressing to specialty training, in which they will remain for several years until they reach their certification of completion of training (CCT). Whilst some specialties may miss out core training, progressing from foundation year directly into specialty training (e.g. general practice and obstetrics and gynaecology), these often still have a core specialty training pathway within their structure before the trainee undertakes further specialization. Therefore, this means that all trainees will be exposed to a number of postgraduate training curricula in the years following graduation from medical school as they progress towards completion of training over an ~6–10 year period.

Following the recent report from the Greenway ‘Shape of Training’ review, it was highlighted that postgraduate training must be able to adapt to ensure that trainees are able to provide safe and effective care for patients across medical specialities. Given the growing threat of AMR and the requirement for cross-specialty engagement with this subject, we performed a cross-sectional analysis of the current coverage and quality of AMS/AMR within UK clinical specialty curricula.

Methods

UK clinical specialties were identified and electronic postgraduate training curricula extracted for interrogation. All training curricula were reviewed by the authors. Those deemed to have a narrow or low clinical focus were excluded from analysis. Curriculum information was recorded, including the date of initial publication and date of revision, as well as the total number of curriculum topics and individual learning points within. Previously validated broad-based search criteria (Figure 1) were used to identify: (i) all curriculum topics; and (ii) all curriculum learning points, which met the electronic search criteria. Curriculum learning points in the context of UK training curricula are defined as individual learning goals that the trainee is expected to achieve during training. As these points are selected by the specialty education training board, their numbers may vary between specialties depending on the number of topics and the depth to which the trainee is expected to demonstrate their knowledge and skills. Two authors (T. M. R. and L. S. P. M.) reviewed all electronically identified points independently, excluding those not directly related to AMS or AMR, based on the definitions in Figure 1. For the purpose of our investigation we focused on bacterial resistance and stewardship. Individual learning points relating solely to antiviral, antifungal, antiprotozoal or antimony/cobacterial resistance were excluded. This focus was selected given that antibacterial agents make up >93% of all antimicrobials prescribed for systemic use. Furthermore, the large variation in prescribing of other antimicrobial classes across different specialties may have influenced the results. Furthermore, duplicate learning points within the same curriculum were not counted twice. Where disagreement arose during the selection of learning points, three authors (T. P. B., T. M. R. and L. S. P. M.) met to discuss them and reach a consensus.

Following the identification of learning points for inclusion, interspecialty variation was assessed in two ways. First, proportions of AMS/AMR learning points were calculated for each specialty using total number of learning points as a denominator. As a comparator, learning points relating to infection prevention and control (IPC) were also extracted and analysed to provide a reference for our observations of AMS/AMR coverage. IPC was selected as it is another infection-related patient safety issue that has been a long-term, ubiquitous healthcare priority and has been promoted through a distributed model requiring specialty engagement. A number of search criteria used to identify IPC points were tested. The use of the same search criteria as those used for identification of AMS/AMR learning points was finally selected, as the search term ‘infect*’ was the most sensitive term for identifying IPC points, with other tested terms (such as ‘aseptic’, ‘control’ and ‘prevent’) not adding to the sensitivity of the search.

Secondly, the frequency of individual learning points per specialty training curriculum was categorized according to the determined level of achievement that each individual learning point was expected to display. To assess the level of achievement, each individual learning point was rated using a modified version of Miller’s pyramid for the assessment of clinical competence. This allowed learning points to be weighted based on the type of knowledge or skill demonstrated (Figure 2): (level 1, demonstration of knowledge (i.e. ‘knows’); level 2, demonstration of an ability to understand knowledge in a clinical context (‘knows how’); level 3, demonstration of a behaviour in a controlled environment (‘shows how’); and level 4, demonstration of a behaviour in a free working environment (‘does’). Figure 2 provides examples of learning points that

Curriculum search criteria:

I. Anti* (wildcard search accepting antibiotic, antimicrobial or similar)

II. Resist* (wildcard search accepting resistant, resistance or similar)

III. Infect* (wildcard search accepting infection, infective, infected or similar)

IV. Stewardship

AMS/AMR definitions:

AMS: ‘Optimising the indication, selection, dosing, route of administration and duration of antimicrobial therapy to maximize clinical cure or prevention of infection while limiting the collateral damage of antimicrobial use, including toxicity, selection of pathogenic organisms and emergence of resistance’

AMR: ‘Resistance of an organism to an antimicrobial drug that was originally effective for the treatment of infections caused by it’

Figure 1. Accepted curriculum search criteria and definitions.
were classified at each level. The rating of learning points relating to AMS/AMR was achieved by anonymizing and presenting them in a randomized order to three authors (T. M. R., T. P. B. and L. S. P. M.). The authors independently reviewed each learning point, rating the expected level that achievement of the learning point would demonstrate. Ratings were then compared and the mode was calculated. When consensus could not be reached using the mode, a fourth author (E. C.-S.) reviewed the individual learning point and rated its level in the hierarchy. This rating was then compared with the three authors’ scores, and discussion held to reach consensus on the appropriate level. Statistical analysis was performed using χ² with Yates’s correction. Ethics approval was not required for this observational study of information in the public domain.

Results

Thirty-seven UK clinical specialty training curricula were selected for inclusion within this study (Table 1). These were initially published between 2009 and 2015; 18 have been updated since their initial publication. In total, among these curricula there were 2318 topics and 42527 learning points. Figure 3 provides information on the topic (Figure 3a) and learning point (Figure 3b) selection process using the criteria defined in Figure 1. Overall, 8/2318 (0.3%) topics were identified relating to AMS/AMR. These were all within the combined infectious diseases training curriculum (8/65; 12%). In contrast 184/42527 (0.4%) individual learning points were identified as relating to AMS/AMR. These were distributed across 33/37 (89%) specialties. Psychiatry core training, rehabilitation medicine, nuclear medicine and hepatology did not have any learning points related to AMS/AMR. In contrast, IPC made up 20/2318 (0.9%) curriculum topics, spread over 20/37 (54%) specialty curricula. Furthermore, 278/42527 (0.7%) individual learning points were identified across the same 33/37 (89%) specialty curricula. This was a significantly greater proportion of IPC coverage for both curriculum topics (P=0.04) and individual learning points (P<0.01) compared with AMS/AMR coverage in UK postgraduate training curricula.

On analysis of the inter-specialty emphasis of AMS/AMR within curricula learning points (Figure 4), combined infection training had the greatest proportion (43/747, 5.8%), significantly higher than the other clinical specialties (P<0.01 for all), which all had <1% coverage. Core surgical training had the second largest frequency (4/409; 0.98%), endocrinology third (4/509; 0.8%), gastroenterology fourth (9/1290; 0.7%) and core medical training fifth (12/1752, 0.7%).

The frequencies of individual learning points per curriculum related to AMS/AMR were then compared, with the number of learning points meeting each level of the hierarchy of knowledge or skill demonstrated compared (Figure 5). In terms of the raw numbers of learning points, infectious diseases had the greatest frequency related to AMS/AMR (n=43), with intensive care second (n=14) and core medical training third (n=12). Analysis of the expected level of achievement to be demonstrated for each learning point showed that the median expectation was ‘knows how’, with 67/184 (36%) expecting demonstration of an ability to apply facts to a clinical context. Of those remaining, 44/184 (24%) were categorized as ‘knows’, 39/184 (21%) as ‘shows how’ and 34/184 as (18%) ‘does’. Therefore, 60% (111/184) of perceived learning outcomes relating to AMS/AMR do not currently require any demonstration of behaviour as part of the expected level of achievement. This trend towards learning points solely necessitating knowledge rather than behaviours related to AMS/AMR was observed across most specialties, regardless of the frequency of learning points identified. For example, despite infectious diseases having the greatest number of individual learning points related to AMS/AMR, 31/43 (72%) of these did not require any demonstration of behaviour in clinical practice (11/43 ‘knows’...
and 20/43 ‘knows how’). In contrast, however, general curricula such as general internal medicine (4/9 ‘shows how’ or 1/9 ‘does’), acute internal medicine (3/8 ‘shows how’ or 1/8 ‘does’) and core medical training (3/12 ‘shows how’ or 4/12 ‘does’) had greater numbers of learning points requiring demonstration of behaviour in clinical practice, despite having low frequencies of individual AMS/AMR learning points within their curricula.

Discussion

On assessment of UK postgraduate specialty training curricula we have observed a low coverage and poor depth of learning expected for AMS/AMR learning outcomes across the majority of clinical specialties. This includes specialties responsible for large volumes of antimicrobial usage, such as primary care and other general specialties.

Overall, AMS/AMR makes up a significantly lower proportion of learning points when compared with other infection-related patient safety issues, such as IPC. This low coverage of AMS/AMR was observed across the majority of general curricula, such as primary care (2/1368, 0.15%), foundation training (2/435, 0.46%), general internal medicine (9/1405, 0.64%), acute internal medicine (8/1680, 0.48%), core medical training (12/1752, 0.68%) and core surgical training (4/409, 0.98%). This is especially concerning within primary care, who are responsible for prescribing 74% of all antimicrobials within the UK yet have only two

Table 1. Summary of current UK clinical specialty training curricula included in our analysis of surrogate markers of cross-specialty engagement with AMS/AMR

<table>
<thead>
<tr>
<th>Specialty curriculum</th>
<th>Date of publication</th>
<th>Date updated</th>
<th>Total number of categories</th>
<th>Total number of individual learning points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute internal medicine</td>
<td>August 2009</td>
<td>August 2012</td>
<td>121</td>
<td>1680</td>
</tr>
<tr>
<td>Cardiology</td>
<td>August 2010</td>
<td>NA</td>
<td>91</td>
<td>1522</td>
</tr>
<tr>
<td>Clinical pharmacology and therapeutics</td>
<td>August 2010</td>
<td>December 2011</td>
<td>42</td>
<td>870</td>
</tr>
<tr>
<td>Core medical training</td>
<td>August 2009</td>
<td>August 2013</td>
<td>110</td>
<td>1752</td>
</tr>
<tr>
<td>Core surgical training</td>
<td>July 2013</td>
<td>NA</td>
<td>35</td>
<td>409</td>
</tr>
<tr>
<td>Dermatology</td>
<td>August 2010</td>
<td>August 2012</td>
<td>53</td>
<td>789</td>
</tr>
<tr>
<td>Endocrinology and diabetes mellitus</td>
<td>August 2010</td>
<td>August 2012</td>
<td>40</td>
<td>509</td>
</tr>
<tr>
<td>Foundation year</td>
<td>July 2012</td>
<td>August 2014</td>
<td>42</td>
<td>435</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>August 2010</td>
<td>August 2013</td>
<td>11</td>
<td>1290</td>
</tr>
<tr>
<td>General internal medicine</td>
<td>August 2009</td>
<td>August 2012</td>
<td>112</td>
<td>1405</td>
</tr>
<tr>
<td>General surgery</td>
<td>July 2013</td>
<td>NA</td>
<td>157</td>
<td>3290</td>
</tr>
<tr>
<td>Genitourinary medicine</td>
<td>August 2010</td>
<td>August 2012</td>
<td>44</td>
<td>776</td>
</tr>
<tr>
<td>Geriatric medicine</td>
<td>August 2010</td>
<td>August 2013</td>
<td>50</td>
<td>917</td>
</tr>
<tr>
<td>Haematology</td>
<td>August 2010</td>
<td>August 2012</td>
<td>45</td>
<td>767</td>
</tr>
<tr>
<td>Hepatology</td>
<td>August 2010</td>
<td>August 2013</td>
<td>10</td>
<td>91</td>
</tr>
<tr>
<td>Immunology</td>
<td>August 2010</td>
<td>NA</td>
<td>36</td>
<td>609</td>
</tr>
<tr>
<td>Infectious diseases</td>
<td>May 2014</td>
<td>NA</td>
<td>65</td>
<td>747</td>
</tr>
<tr>
<td>Intensive care</td>
<td>January 2015</td>
<td>NA</td>
<td>164</td>
<td>3594</td>
</tr>
<tr>
<td>Medical oncology</td>
<td>August 2010</td>
<td>NA</td>
<td>68</td>
<td>1424</td>
</tr>
<tr>
<td>Medical ophthalmology</td>
<td>August 2010</td>
<td>August 2013</td>
<td>38</td>
<td>530</td>
</tr>
<tr>
<td>Metabolic medicine</td>
<td>August 2010</td>
<td>NA</td>
<td>44</td>
<td>707</td>
</tr>
<tr>
<td>Neurology</td>
<td>August 2010</td>
<td>August 2013</td>
<td>51</td>
<td>289</td>
</tr>
<tr>
<td>Nuclear medicine</td>
<td>August 2014</td>
<td>NA</td>
<td>10</td>
<td>745</td>
</tr>
<tr>
<td>Obstetrics and gynaecology</td>
<td>August 2013</td>
<td>NA</td>
<td>19</td>
<td>1250</td>
</tr>
<tr>
<td>Paediatric surgery</td>
<td>January 2015</td>
<td>NA</td>
<td>193</td>
<td>2488</td>
</tr>
<tr>
<td>Paediatrics</td>
<td>September 2010</td>
<td>NA</td>
<td>23</td>
<td>1802</td>
</tr>
<tr>
<td>Palliative medicine</td>
<td>January 2010</td>
<td>October 2014</td>
<td>66</td>
<td>1105</td>
</tr>
<tr>
<td>Primary care</td>
<td>October 2015</td>
<td>NA</td>
<td>37</td>
<td>1368</td>
</tr>
<tr>
<td>Psychiatry</td>
<td>July 2013</td>
<td>March 2015</td>
<td>44</td>
<td>313</td>
</tr>
<tr>
<td>Rehabilitation medicine</td>
<td>August 2010</td>
<td>NA</td>
<td>36</td>
<td>490</td>
</tr>
<tr>
<td>Renal medicine</td>
<td>August 2010</td>
<td>August 2012</td>
<td>114</td>
<td>860</td>
</tr>
<tr>
<td>Respiratory medicine</td>
<td>August 2010</td>
<td>May 2014</td>
<td>81</td>
<td>1538</td>
</tr>
<tr>
<td>Rheumatology</td>
<td>August 2010</td>
<td>NA</td>
<td>58</td>
<td>809</td>
</tr>
<tr>
<td>Stroke medicine</td>
<td>August 2010</td>
<td>August 2013</td>
<td>18</td>
<td>361</td>
</tr>
<tr>
<td>Trauma and orthopaedics</td>
<td>August 2015</td>
<td>NA</td>
<td>27</td>
<td>1709</td>
</tr>
<tr>
<td>Urology</td>
<td>January 2015</td>
<td>NA</td>
<td>109</td>
<td>2208</td>
</tr>
<tr>
<td>Vascular surgery</td>
<td>July 2014</td>
<td>NA</td>
<td>54</td>
<td>1079</td>
</tr>
</tbody>
</table>

NA, not applicable.
Figure 3. Selection method to identify AMS/AMR curriculum topics and learning points in UK clinical specialty training curricula. IPC = IPC point. Other infection = infection-related point other than AMS/AMR or IPC.

Figure 4. Percentage of UK clinical specialty training curricula related to AMS and/or AMR. Infectious diseases = combined infection and microbiology training. O&G = obstetrics and gynaecology. *P < 0.01 compared with all other clinical specialties.
learning points in their postgraduate training curriculum. Moreover, only one of these requires demonstration of a behaviour (‘shows how’). In contrast, general internal medicine, acute internal medicine and core medical training had greater numbers of learning points requiring demonstration of AMS/AMR behaviour in clinical practice (‘shows how’ or ‘does’), but still had low overall frequencies of AMS/AMR learning points in their curricula. Recently these specialties have been the target of numerous AMS interventions,34 as they are responsible for much of antimicrobial initiation, with a third of all European hospital inpatients on antimicrobial therapy at any one time.35 Despite this, very little importance appears to be placed on AMS/AMR within their training curricula compared with other learning topics, many of which are symptom- or presentation-specific conditions.25

A second observation is that certain specialties who have high rates of antimicrobial usage and healthcare-associated infections, such as haematology and renal medicine,9,10 have both low coverage of AMS/AMR in their training curricula and few training outcomes that require AMS/AMR behaviours. Yet other specialties, such as infectious diseases and intensive care, which also use high amounts of antimicrobials and deal with high rates of healthcare-associated infections, do appear to have greater frequency of AMS/AMR coverage. However, despite having relatively high frequency of coverage, the quality of learning points related to demonstration of behaviour remains poor. Moreover, our findings also highlight the ‘top-down’ expectation of AMS/AMR understanding and behaviour, where specialists are expected to have a greater understanding of AMS/AMR and demonstrate a greater frequency of skills compared with generalists and trainees. This supports evidence in the literature that has clearly demonstrated junior doctors’ poor understanding of AMS/AMR.6

Since the implementation of the UK Five Year Antimicrobial Resistance Strategy in 2013,3 a position of key policy makers has been to advocate individual prescriber responsibility and clinical leadership of AMS from within all specialties.2,3 This has included supporting a greater emphasis on developing behaviour change to improve the quality of antimicrobial prescribing.3 Despite this, our findings demonstrate that steps promoting behaviour change towards antimicrobial usage do not yet appear to have been translated into formal training outcomes for the majority of UK clinical specialties. For the development of clinical leadership from within each specialty, AMS/AMR must have a presence and an emphasis towards implementation ‘on the ground’. Whilst demonstration of knowledge and its application to clinical scenarios can show that a trainee understands a

Figure 5. Total number of learning points in UK clinical specialty training curricula related to AMS and/or AMR with associated levels of clinical competence documented. O&G, obstetrics and gynaecology. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
concept, setting standards at this level does not explore the ability of the trainee to transfer this awareness into clinical practice. Therefore, to promote active engagement in AMS and promote emphasis of positive actions and leadership, it is imperative that standards and outcomes require demonstration of behaviour in clinical practice. For this to be achieved, current standards must be reviewed, requiring engagement from both the General Medical Council and the Academy of Medical Royal Colleges. This must ensure that accountability for engagement with this leading patient safety issue is emphasized across all clinical specialties and that mechanisms are put in place to promote the evaluation of AMS/AMR behaviours as part of clinical training. Furthermore, with the growing understanding of the importance of beginning AMS education as early as possible to promote sustainable changes in practice, standards for junior trainees during their foundation years must be prioritized to break the current top-down expectation with respect to AMS/AMR.

Within this study, we only fully reviewed UK postgraduate training curricula, meaning that our results may not be generalizable to other settings. However, by ensuring that our methodology is replicable this may offer an opportunity for future review in other settings, such as the USA, Australia and Europe, where training curricula do not currently fully facilitate direct comparison with the UK. For example, in the case of the USA nationally standardized training guidelines were not evident for comparison. In Europe, the harmonized training curricula of the European Union of Medical Specialists (UEMS) were reviewed. These were found to have very few references to AMS/AMR across specialties, making meaningful analysis difficult. Individual European national curricula were not reviewed. Within national Australian curricula, the Advanced Training Curricula was developed by the Royal Australian College of Physicians were found to be most similar to UK clinical training curricula. Review of these identified similar rates of AMS/AMR coverage within most specialties described compared with UK postgraduate training curricula. Despite individual European national curricula not being reviewed, the lack of AMS/AMR topics and learning points observed within the UEMS curricula should be considered a priority for review given the commitment of the European Commission to improve education and training within this field.

This study had several strengths and limitations. Within our methodology a validated search criterion and quality assessment tool were utilized to identify and appraise learning points. This standardized approach will facilitate future replication of our methodology. Inter-rater subjectivity was a potential bias during eligibility screening and quality assessment of learning points. To account for this we ensured that points were reviewed by multiple authors independently, with good results. For example, on assessing the level of achievement of learning points, two or more readers agreed in 179/184 (97%) of cases, with only 5 learning points requiring review by a fourth researcher. Finally, this method only offers a proxy indicator for the attributed importance of AMS/AMR within UK clinical postgraduate specialty training and does not account for individual and informal promotion of the topic. Furthermore, there is currently no comparison to determine what is an appropriate level of AMS/AMR coverage within individual training curricula. To address this, we drew comparison with another infection-related patient safety issue, IPC, which has been the focus of similar national and international campaigns as AMS/AMR, but over a longer period of time. Following demonstration of our findings compared with IPC, we hope that this analysis will serve as a baseline to highlight the current low rates across most UK clinical specialties and allow future quantification of the effect of targeted interventions within this field.

In conclusion, coverage and quality of AMS/AMR across UK clinical specialty training curricula is poor, with the majority of learning points not promoting development of positive behaviours in practice. To maintain support from national policy makers and promote the development of interest and clinical leadership within specialties within the UK, we call for a greater emphasis on the demonstration of AMS behaviours to be incorporated into clinical specialty training curricula outcomes. With the current focus on reviewing and adapting postgraduate training in the UK, this offers an ideal opportunity for these changes to be implemented to promote the importance of AMS/AMR education for improving patient safety. We call for cross-specialty action in prioritizing AMS/AMR education as a key element of postgraduate education and suggest that this method of assessing postgraduate clinical training curricula may act as a possible mechanism to serially assess engagement within training curricula both in the UK and internationally.

Acknowledgements
We would like to acknowledge the National Institute of Health Research Imperial Biomedical Research Centre and the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infection and Antimicrobial Resistance at Imperial College London in partnership with Public Health England.

Funding
This report is based on independent research funded by the National Institute for Health Research Innovation for Invention Scheme (i4i), Enhanced, Personalized and Integrated Care for Infection Management at Point of Care (EPIC IMPOC), II-LA-0214-20008.

Transparency declarations
L. S. P. M. has consulted for bioMérieux and DNA Electronics. A. H. H. has consulted for bioMérieux. All other authors: none to declare.

Author contributions
T. M. R., L. S. P. M. and A. H. H. devised the study idea and protocol. T. M. R. and T. P. B. performed data collection. T. M. R., T. P. B., L. S. P. M. and E. C. S. analysed the data. T. M. R. produced the initial manuscript draft. All authors contributed significantly to the review of the manuscript and preparation for final submission. All authors agreed on the final submission.

Disclaimer
The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the UK Department of Health.

References
Cross-specialty coverage of antimicrobial stewardship

